

ABC Techno Labs India Private Limited

ABC TOWER #400, 13th Street, SIDCO Industrial Estate - North Phase,
Ambattur, Chennai - 600 098, Tamilnadu, INDIA.
Ph: +91-44-2625 7788 / 99, +91 94442 60000 / 95661 87777
Email: lab@abctechnolab.com / Web: www.abctechnolab.com

TC - 5770

India Private Limited
Quality Uncompromised

(An ISO: 9001, ISO: 14001, ISO: 45001 & ISO: 22000 Certified Company)

Accredited by NABL vide TC-5770, NABET / QCI, Recognised by MoEF&CC, BIS, APEDA, IOPEPC, Tea Board India

ISSUED TO:

TEST REPORT

M/s. Sinter Machines, 35,Peelamedu Industrial Estate, VK Road Peelamedu Coimbatore – 641 004.

Report Number	:	ABCTL/2312/0006/006					
Sample drawn by	:	ABC Techno Labs India Private Limited					
Sample description	:	Source Emissio	Source Emission Monitoring - 6				
Date of sampling	1	30-11-2023	Date of Completed	:	09-12-2023		
Date of Receipt	:	01-12-2023	Report date		15-12-2023		
Date of Analysis	1	01-12-2023	Page No	:	1 of 1		

ULR: TC577023000006613F

		SM 400E HMS - Machine						
Sl.No.	Stack Details	COMPOSITE MIX	MLP	HMLD	Eco Sand	Iron Powder		
	4	40%-60%	30	10	30	30		
1	Stack Height from ground level in meters		7.3					
2	Stack Diameter in meters	0.093						
3	Cross Sectional Area, m ²	0.0068						
4	Velocity of Flue Gas in m/sec	5.4						
5	5 Gas Discharge in Nm³/hr		101					
6	Stack gas temperature in (K)	372						
7	Ambient gas temperature in (K)	303						
-	Sampling Method	IS 11255 Part 3 (Reaff.2018)						

		Pollutant Concentration - Results						
S. No.	Stack Attached to	Particulate Matter (mg/Nm³)	Sulphur Dioxide (mg/Nm³)	Oxides of Nitrogen (ppm)	Carbon monoxide (mg/Nm³)	Carbon dioxide (%)	Oxygen (%)	
1	SM 400E HMS – Machine	37.8	9	144	347	5.9	12.6	
	CPCB Standard	150		**				
	Test Method	IS 11255 Part 1 (RA.2014)		BS EN 50379-1-2012.			A New Condensation of the	

.....End of Report.....

S. Dharani Quality Manager CHENNAI PO CHENNAI PO

A. Robson Chinnadurai Technical Manager-Lab

Authorised Signatory

Terms and conditions :

Verified by

ABC Techno Labs India Private Limited

(An ISO: 9001, ISO: 14001, ISO: 45001 & ISO: 22000 Certified Company)
ABC TOWER #400, 13th Street, SIDCO Industrial Estate - North Phase,
Ambattur, Chennai - 600 098, Tamilnadu, INDIA.

Ph: +91-44-2625 7788 / 99, +91 94442 60000 / 95661 87777 Email: lab@abctechnolab.com / Web: www.abctechnolab.com

TEST REPORT

M/s. Sinter Machines, 35,Peelamedu Industrial Estate, VK Road Peelamedu Coimbatore – 641 004.

Report Number	:	ABCTL/2312/0006/006					
Sample drawn by	•	ABC Techno La	ABC Techno Labs India Private Limited				
Sample description	:	Source Emission Monitoring - 6					
Date of sampling	:	30-11-2023	Date of Completed	:	09-12-2023		
Date of Receipt	:	01-12-2023	Report date	:	15-12-2023		
Date of Analysis	:	01-12-2023	Page No	:	1 of 1		

		SM 400E HMS - Machine				
Sl.No.	Stack Details	COMPOSITE MIX	MLP	HMLD	Eco Sand	Iron Powder
	2	40%-60%	30	10	30	30
1	Stack Height from ground level in meters		9	7.3		
2	Stack Diameter in meters	0.093				
3	Cross Sectional Area, m ²	0.0068				
4	Velocity of Flue Gas in m/sec	5.4				
5	Gas Discharge in Nm³/hr	101				
6	Stack gas temperature in (K)	372				
7	Ambient gas temperature in (K)	303				
	Sampling Method	EPA 25A				

A CONTRACTOR OF THE CONTRACTOR	Stack Attached to	Test Method	SM 400E HMS - Machine			
S. No.	Pollutant		Pollutant Concentration –Results, mg/Nm ³			
1	Acetaldehyde		BDL (DL:0.01)			
2	Acetone	X 10 40 X	BDL (DL:0.01)			
3	Acrolein	EPA 25A	103			
4	Butadiene	LINZSA	184			
5	Formaldehyde		142			
6	Styrene		536			
7	Total VOC		1347			
8	Hydrogen Chloride	US EPA Method 8	BDL (DL:0.01)			
9	Hydrogen Cyanide	US EPA CTM 33	BDL (DL:0.01)			

5. 大桶2

S. Dharani Quality Manager Verified by

.....End of Report...

1. Ahr

A. Robson Chinnadurai Technical Manager-Lab Authorised Signatory

Terms and conditions